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ABSTRACT y/q%‘ﬁ@

The hydrodynemics of pneumatic tire hydroplaning are explained from a
purely analytical standpoint. Lift and drag forces on an assumed planing
surface (tire) are obtained for an idea; fluid undergeoing two-dimensional
motion. For the condition of incipient hydroplaning the theoretical 1ift
coefficient is found to be 0.8, compared to a value of 0.7 from experiment.
The 1ift and drag coefficienis are shown to decrease as the tire 1lifts further

off the runway. The pressure distribution on the pavement from theory compares

favorably with the experimental results. /Z?C4ﬂé%30/’.
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INTRODUCTION

The planing or skiing of a pneumatic airplane tire has, on numerous
occasions, placed pilots in rather precarious situations. This phenomenon of
tire hydroplaning can also be of concern to motorists cruising at relatively
high speeds (50-60 mph) on flooded highway pavements. Tire hydroplaning
results from the large water pressures developed between the tire and pavement
surface. Whenever the total hydrodynamic force developed from the distributed
water pressure on the tire equals the total load the tire is carrying,hydro-
planing occurs. The tire then loses contact with the pavement and essentially
skis on the water. The comprehensive experimental work on tire hydroplaning
by the personnel of the Langley Research Center of the National Aeronautics
and Space Administration is of a pioneering nature. Horne and Dreher (1)
summarize recent experiment research on tire hydroplaning. The purpose of
this investigation is to explain tire hydroplaning from a standpoint of
theoretical hydrodynamics. Prior to developing the theory, the pertinent fluid
variables are discussed. Finally the theoretical results are compared with

existing experimental results.



DISCUSSION OF HYDRODYNAMIC VARTABLES

All of the manifestations of tire hydroplaning are comprehensively
discussed by Horne and Dreher. It is quite obvious though that not only the
hydrodynamics of the flow, but also the elasticity of the tire should be
included in a general theory. 1In this investigation, only the hydrodynamic
part of the problem is considered. The shape of the tire will be considered
to be fixed for this initial study.

The hydrodynamic or lift force exerted on the tire by the water is a

function of the following geometric, flow, and fluid variables

FL =T (A, D, Uy, p, v, O, W) (l)

in which A is a characteristic area on which the water pressure acts and is
a function of tire geometry, D is the depth of water on the pavement, U is
the translational speed of the tire, and p, vy, 0, and U are the mass density,
specific weight, surface tension, and dynamic viscosity of the water, re-

spectively. The 1ift force can be represented by
poocoafl (2)

in which CL can be shown from dimensional analysis to be a function of the

following variables

c.=f" (N, N, N

W Ve Tire Geometry) (3)

The quantities NF’ NW’ and NR are the dimensionless parameters Froude number,

Weber number, and Reynolds number, respectively. BEach of these parameters



represents the relative significance of the mass density to each of the other
three fluid properties. The relative significance of each of the four fluid
properties present in tire hydroplaning is discussed in the following.

a) Mass density. The density of the water becomes an obvious

significant fluid property in tire hydroplaning because of the severe
curvature of the streamlines in the vicinity of the tire and the high
speeds involived.

b) Specific weight. The existence of a free surface introduces

the effect of gravity into the problem as well as surface tension. The
effect of gravity on fluid-flow patterns can be represented by the well-
known Froude number, which is proportional to the ratio of fluid-inertia

force to fluid-weight force, defined as

N, = %- (%)
in which g is the acceleration of gravity, and L is a characteristic
length. For tire hydroplaning the suitable choice of characteristic
velocity and length would be the translational speed of the tire, U,
and the depth of water, D, on the pavement, respectively. Inasmuch as
hydroplaning normally occurs for high speeds (5 40O mph) and at shallow-
water depths the Froude number can be considered to be gquite large, As
discussed by Rouse (2) gravity-type flows at large Froude numbers can be
well represented from analyses for which gravity as a variable is absent.
The effect of gravity on tire hydroplaning is believed to be insignif-

icant in the usual situation, and will not be included in the theory.



c¢) Surface tension. As with specific weight, the liquid-gas

property of surface tension is present as a variable because of the
existence of the liquid-gas interface, the free surface. The effect of
surface tension can be represented by the Weber number, a dimensionless
parameter which can be defined as being proportional to the ratio of
fluid-inertia force to fluid surface-tension force. The Weber number

is defined here as

(5)

N, = 9
W J/o/pL

For the hydroplaning problem U would logically be the translational
speed of the tire, amd L the depth of water on the pavement, D. Surface
tension affects motion only for small values of the Weber number and,
more particularly, for smll radii of curvature of the water surface.
Inasmuch as the velocity U is large ard the depth D is small it is not
readily apparent that the Weber number will be either large or small.
For large values of the Weber number the effect of surface tension is
insignificant and can be neglected in analyses. It is believed, how-
ever, that surface tension does not appreciably affect the pressure
arnd, consequently, is not an important parameter for tire hydroplaning.
It is true, of course, that surface tension is the cause of the break-
up of the jet that leaves the vieinity of the tire in the form of a
spray. This breakup is not believed, however, to affect the magnitude
of the 1ift on the tire. The theory that follows is based on the
assumption that surface tension is insignificant.

d) Viscosity. Since all fluids possess viscosity its inclusion

or exclusion from a theory must be seriously considered. The well-known



Reynolds number, which is a ratic of fluid-inertia force to fluid-viscous

force, represents the relative importance of the two fluid properties, mass

density and viscosity. The Reynolds number
= 2 )

The characteristic length would logically be the spacing between the
tire amd pavement when total hydroplaning occurred. The translational
speed U is usually large and the viscosity of water is quite low,
meaning that, except for very small values of L, the Reynolds mumber
will be large. The effect of viscosity becomes insignificant for high
Reynolds numbers and can rightly be neglected as a variable. Viscosity
would be expected to play somewhat of a role for slightly damp (apd if
oily as just after a rain) pavements on which slipping from lubrication
can take place. In this case hydroplaning or slipping is greatly
augmented if the tires are smooth. On the other extreme, that is
flooded pavements, the density of the water would be the expected sig-
nificant fluid property. These two extremes of thin film and viscosity
effect and moderate to flooded depth anmd density effect have been dis-
cussed by Horne anmd Dreher to some extent. The normal situation for
aircraft seems to be one for which the water depth is more than thin-
film and the tire is not smooth, but grooved. The grooves allow for
escape of the water under high pressure, thereby delaying hydroplaning.
The mass density of the water is assumed to be the significant and the
only fluid property present in the proposed theory. This assumption is
strengthened by the experimental results of Horne and Dreher. If the

characteristic area of equation (2) is represented by the static footprint



area and U by the velocity of the vehicle at the incipient condition of the
hydroplaning, Horne and Dreher found that C; is essentially a constant, O.7.
Their results are from tests covering a range of inflation tire pressures
from 24 psi to 150 psi, of vehicle speeds from 45 mph to 120 mph, and of
1ift force FL (which is equal and opposite to the vehicle weight force) from
925 1b. to 22,000 1b. Their results prove that, for the tests run at least,
the fluid mass density is the sole fiuid property affecting motion ard,
furthermore, strongly indicate that the flow pattern in the vieinity of the
tire was essentially similar for all tests. The latter statement follows

from the fact that CL was essentially constant for all tires.




THEORY

The foregoing discussion on the significance of the various fluid-

property variables present led to the conclusion that, for moderate water

5

depths and vehicle speeds, the fluid density is the significant fluid
variable. Such a condition in essence specifies the assumption of an ideal
fluid. If such an assumption is Justified no more liberty would be taken

if, further, the flow is assumed to be irrotational. The corditions for

potential flow are now satisfied. The wvelocity potential is defined by

in which ; is the velocity at any point and ¢ the velocity potential. 1In
order that the useful tool of complex variables may be utilized the flow is
further assumed to be two-dimensional. Considerable liberty is taken with
this assumption as the actual flow under and around a tire is definitely
three-dimensional. It is obvious that the results of the two-dimensional
theory will have to be interpreted with caution in applying them to the
actual three-dimensional problem.

For two-dimensional motion in rectangular coordinates the velocity po-

tential is defined as

us 2, .- (8)

in which u amd v are the horizontal and vertical components of the total
velocity V, in the x- and y-directions, respectively. The stream function

¥ is defined as



2 2
2 d° d
V¢=—§+—§=0, (10)
ox oy
and
2 2
v2¢=a—%+a—i=o (11)
2
ox oy
The dynamical equation of Bernoulli
2 (42 -
5 (W +v) +p = P, (12)

in which p is the water pressure at any point and P, is the reference pressure,
which in this instance is atmospheric. Once the potential field represented
by @ and/or ¥ is found the dynamical quantities such as pressure variation,
1lift, and drag can be determined from Bernoulli's equation.

The hydroplaning problem is one of unsteady flow to the stationary
observer. The problem can be transformed into one of steady motion simply by
changing the axis of reference to the tire. The picture now seen is that of
a jet of constant depth D and infinite width striking a curved surface (tire)
which is slightly above or in contact with a plane surface as shown in Figure 1.*
This steady-flow problem is dynamically identical to the unsteady-flow hydro-
planing problem of the tire translating at the same speed, U. When the tire

is in contact with the pavement, partial hydroplaning is said to exist; when

A1l illustrations are in Appendix A,




there is a space between the tire and the pavement total hydroplaning is

said to exist. The theory here is for the more general case of total hydro-

e

planing, of which partial hydroplaning is a special case.

The hydrodynamic problem depicted in Figure 1 is that of free-streamline
flow with a curved boundary. From Bernoulli's theorem the velocity everywhere
on the water surface has the constant value of U as gravity is neglected.

The 1ift force on the tire can be determined by integrating the pressure
distribution thereon. The drag force can be either determined from the
pressure distribution on the tire or from a simple momentum analysis involving
the unknown downstream depth, d, and the angle of the jet at infinity. These
two quantities are not known a priori and depend solely on the tire shape ard
tire-position relative to the pavement. The elasticity of the tire and the
vehicle weight are not explicity nor directly taken into account. The tire
is assumed to be flexible and deformed out of its original circular shape

But no dynamic balance between water pressure, air-inflation pressure, tire
elasticity, tire-rotating effects, and tire shape is made. Furthermore, no
attempt is made to effect a dynamic balance of 1lift force amd vehicle weight
force which dictates the clearance or space between tire and pavement at the
downstream exit. The theory herein is simply a hydrodynamical one for which
forces are determined for an assumed shape and assumed position of the shape

relative to the pavement.

Conformal Representation - The theory of complex variables through the means

of conformal representation is a useful technique for many two-dimensional
free-streamline problems for which irrotational filow may be assumed. The

so-called physical plane, or z-plane




z =x + iy (13)

is depicted in Figure 1 for the case of a jet striking the curved surface.
Point A is at minus infinity and point B at plus infinity. At points C and

E the fluid is assumed to separate from the tire. Point D is a stagnation
point. Theoretically point F is also at infinity. At point G the velocity
reaches its minimum value on the pavement. At points A, B, and F the velocity
is U.

The complex-potential plane defined as

W=+ iy (1h)

is shown in Figure 2. Point D is arbitrarily given a value of ¢ of 0. The
stream function ¢ is assigned a value of O on AB. The values of the other
points in the plane are self-explanatory.

The dimensionless complex velocity

V-
= ==t o= y_2
C 5" -'v°-10° (15)
comprises the hodograph plane, as shown in Figure 3. The angle that the
fluid velocity makes with the x-axis is 8§, which is defined as
oo -1
5 = tan ~(v/u) (16)

In the hodograph plane lines AFE and BC are arcs of a circle of unit radius

inasmuch as they are free streamiines for which V = U. The line AGB forms

[}

a slit as G is a point of minimum velocity on the pavement. TILine CDE is
curved in the hodograph plane as both the angle § and the velocity V are

changing on the curved tire surface. Point F can be either in the third or



fourth cuadrant, deperding on whether 6_ > m/2 or 6 < m/2, respectively.

F F

The function

Q=1n(=1n= - i6 (17)

constitutes the logarithmic rodograph plane, shown in Figure 4. Iines AFE
and BC are straight as 1n V/U = 0. Similarily lines AGC and GB are straight
as & = 0. On CD ard ED, how:v~r, the logarithmic-hodograph lines are curved
as both 8 and 1n V/U are varying. This fact extremely complicates the pro-
blem of conformal representation as the exact shape of lines CD and DE in the
log-hodograph plane are not mown a priori. Furthermore the usual practice
of using the Schwartz-Christoffel transformation is precluded because of
these non-polygonal lines in tke log-hodograph plane.

Since the classical approach to free-streamline hydrodynamics is pre-
cluded two alternatives were considered. The first involved the strictly
head-on approach of direct numerical analysis, involving finite-difference
equations and/or relaxation techniques. The second alternative was to use
an untried approach. The latter alternative was chosen with the idea that
in addition to solving the immediate problem a possible contribution could

be made to the area of free-streamline theory with curved boundaries.

Solution in Terms of § and 1n V/U - The technique to be used is based on

the fact that all analytic functions satisfy Iaplace's equation in the

respective planes. Since

Q:ln';:ln ﬁ.a;

10




is an amalytic function if only the single-valued part of the ln-function is

used, it follows that

v25=é_g+é.g=o (18)
ox oy

and

Vi g - — == =0 (19)

These two equations constitute a boundary-value problem for § and/or 1n V/U
in the z-plane. Inasmuch as the location of the free-streamlines are not
known a priori this change in dependent variables does not simplify the pro-
blem. In the w, or complex-potential, plane, however, the boundaries on o
ard § are known a priori. It is also apparent that, from the theory of

analytic functions

2 o
v25=—a—g+a—g=o (20)
o oy

and

v2[1n %J = =0 (21)

1
N,
v

In Pigures 5 and 6 the bourdary conditions for § and 1n V/U are shown. On
line AGB the angle of the streamline § = O whereas 1n V/U varies, reaching a
minimum at G. Incidentally, point G does not necessarily have to be

represented as a point in the subsequent analysis as the hodograph planes are



not used. On the free-streamlines AFE ard BC 1n V/U = O ard § varies. On
line CDE both & and 1n V/U are varying. It should be noted that at D 1n V/U
approaches minus infinity and § has a step discontinuity of mas the fluid
leaving D for C has the opposite direction than that leaving for E. Either
§ or 1n V/U can be arbitrarily specified on CDE. The boundary-value pro-
blem for § and/or I1n V/U in the w-plane is much simpler than in the z-plane
because of the straight lines forming the bourdaries on the w-plane. The
boundary-value problem can be formulated for 8 on all lines by use of the

Cauchy-Riemann equations on lines AFE and BC. The equations in this instance

are
y
-g—i = i:p—U] (22a)
and
v
g_(i _ a[;: U] (22b)

On lines AFE and BC 1n V/U = 0. By the first Cauchy-Riemann equation 38/d¢ =
0 on AFE and BC. The boundary-value problem for § in the w-plane is shown in
Figure 6. On CDE § is specified by an arbitrary function. Since the boundary
conditions on lines DCB and DEF are not homogeneous, that is both Dirichlet-
and Neumann-type boundary conditions are specified on the same line, classic
techniques for solving v26 = 0 in the w-plane are not very useful.

The problem of mixed boundary conditions on DCB and DEF can be alleviated
by transforming the w-plane into another plane for which all straight lines

have only single boundary conmditions. The transformed plane will be called

12




the w'-plane, where w' = o' + i{§'. Its dimensionsless counterpart is the wl_

plane, where w, = W'/cp'B =, + i{;. In order that the w -plane satisfy the
above condition it must have the shape of a rectangle, as shown in Figure 7.
On line AB the Dirichlet condition is 8§ = 0. On lines AFE and BC the Neumann
condition of 86/8@1 = 0 must be satisfied. The boundary conditions on these

three lines can be obtained from a theorem of conformal mapping, which states

~ Y

that under transformation of an analytic function {Q) boundary conditions on
a function (8) of the type & = constant and grad § = O remain invariant,
Churchill (3). On CDE or EDC, however, § varies. The function for § on EDC
will not remain invariant under transformation from the w-plane to the W, -
plane. Since § is to be arbitrary on EDC it will be specified in terms of o
in the wl-plane.

The boundary-value problem now becomes one of a solution to

> 2
v26=652+a_§§=0 (23)
%, d%

in a rectangle. The technique of Fourier series will be utilized to effect

the solution for arbitrary functions of § on EDC. Since

and W = W(w )’

13



or
dz = %e°o N gy (2k)

The solution for & = 5(¢l, ¢l) in the wl-plane and the determination of its

harmonic conjugate 1n V/U ermables the determination of 2 as a function of Wy

From the transformation w = w(wl) the derivative dw/dwl can be obtained.
Upon integrating equation (2lt) the shape of the curved surface (tire) in the
z-plane can be obtained.

In order that the w-plane can be transformed into the wl-plane an inter-
mediate plane is necessary. This plane is depicted in Figure 8 and it called
the t-plane. The Schwartz-Christoffel transformation can be used to connect
the t-plane to both the w-plane and the wl-plane as the latter two planes are
closed polygons. Since there are a total of six points in each plane (it is
not necessary to include point G as it is not a corner in either the w- or
wl-plane), and three points may be located arbitrarily in the t-plane, three
points have to have variable values on the real axis of the t-plane. The
arbitrary points are chosen to be A, B, and E, located at O, 1 and infinity,
respectively. Point F is located at - a, where a can take on any value
between O and ®. Point C is located at tc. At point D, t = b, which can

vary from approximately tc to ». Using the Schwartz-Christoffel transformation

to connect the t-plane with the w-plane

a At - b)
T - T 1) (% + &) (25)

in which A is a complex constant. By using partial fractions

14




av _ t -Db N t -b t-b
dt ~ a(l +a)(t +a) (1+a)(t-1)  at

Upon integrating and simplifying

(8 + D) 1n(t +a)p + B (26)

-1 gnt-1)

w=A b Int -
= a 1+a “all + a)

in which B is a complex constant of integration. The constant A can be

evaluated at point A to be

a UD
A=% ¥
At point B it is found that
d a b-1
5% T+a (27)
At point E the constant of integration can be evaluated to be
B = ?E + ild
The complex-potential function becomes
uD a b-1 (a +1) .
Vo= = lnt--g mln(t-l)-mln(t+a) +CPE+1Ud
or
weBian - Boane o) B2z D gnts s a) s g+ 1 (28)

The latter expression is clearly the anmalytic function for a source of
strength UD/ﬂ at A, a sink of strength Ud/n at B, and a sink of strength

U(D - 4)/m at F, all in the t-plane.

15



By transforming the t-plane to the wl-plane

dw
1 Al
it - (29)

Vi VT o1 /t-tc

in which A' is a complex constant. From the theory of elliptic functions,

Bowman (4), it is apparent that if t, = 1/x%, in which k is the modulus of
Jacobian elliptic functions, the above expression can be integrated in terms

of elliptic functions. From Byrd and Friedman (5) or Bowman

=% st [»/"E] (30)

Y1

in which K is the complete elliptic integral of the first kind and sn is the

sine-amplitude Jacobian elliptic function. The inverse relationship
2 2
t = sn [le, k] = sn [le] (31)

In the wl-plane cPlB has been made unity. It follows from the transformation
of a rectangle into the upper half of the t-plane that d’lE'DC = K'/K in which
K' is the complementary elliptic integral of the first kinmd. Since K = K(k)
and K' = K(k'), in which k' is the complementary modulus related to the

modulus by

k" =1 - k5, (32)

it follows that by changing k the aspect ratio of the rectangle in the wl-

plane changes. The value of & ard b in the t-plane can be determined from the

16




location of points F and D in the wl-plane. Hence

a= - snz(iKtth) (33)

and

2 .

b = sn (chlD + iK') = 77 (34)

k- sn (Ko, )

1D

From the differentiation relationships for Jacobian elliptic functions
dw.
1 1

at - (35)

2k[ sn(le) cn(le) dn(KWl)]

in which cn is the cosine-amplitude and dn the delta-amplitude function. The

three functions are related by

2 2
sn (le) + cn (le)

=1 (36a)
and

k2sn2(le) + an(le) =1 (36b)

The relationship for dw/dw1 can be expressed entirely in terms of Jacobian

elliptic functions with le as the argument

iy b - sne(le) dn(le) (
1 Tlas snE(le) sn(le) cn(le) 37)

The solution for Q(wl) is determined by inspection once § is found from

1T



the bourdary-value problem formulated in the wl-plane. Applying separation

of variables technique to equation (23) a possible solution is

§ = (cl sinh By, + c, cosh Bwl)(c3 sin Bp, + ¢ cos Bml) (38)

in which B is a constant to be determined from the boundary conditions. For

B = O the separate solution
8 = (by ¥y + b2)(b3qi +by) (39)

The boundary conditions are

BC: 9 =1 ; aa/aml =0
EDC: Wl = K'/K; & = f(¢1)

in which f(q&) is an arbitrary function, discontinuous at D; it can be related

to a continuous function g(qi) by

il

[£(e) ] = 7 - &(y) (40a)

[£(9)]p = - &lg) (kob)

For B = 0 the boundary condition on AB requires that b, = 0. The Neumann

boundary condition on AFE amd BC requires that b3 = 0. On EDC

6= £ley) = Dyby¥gpe = 4, | (41)

18



From the theory of Fourier series, Churchill (6)

1 1
A = | fle)dp, = o - | alp)ap, (k2)
© 0
For B # 0, the boundary condition on AB requires that c, = 0. For the boundary
condition on AFE to be satisfied c3 = 0. On BC the Neumann boundary condition

means that sin A = 0. Hence A =nmy n = 1,2,3,.... The total solution in

terms of Fourier series

K .
8 =A ¥t }E;‘Ah sinh nmy, cos nmp, (43)
n:

The coefficient Ah is determined from the boundary condition on EDC

1

A sinh(nmK'/K) =2 f(@l) cos nmp, dp;

(L4)
1

2 .
== sin nmp, ) - 2 glep;) cos nmp do,

It will be shown later that Ao must be O in order that 1n V/U = 0 on both AFE

and BC. The boundary condition on BC will fix the location of D in the Wy "

plane.

The function f(¢l) must be specified such that the boundary EDC has the

proper curvature and resembles the deformed portion of a tire. Three separate
elementary functions were tried in an attempt to produce a curved boundary on

EDC that resembles a hydroplaning tire. The final relationship for dz is

19




expressed in terms of the solution for a flat plate times an expression including
the effect of curvature. Since the effect of curvature can be included in one
term the flat-plate sclution will be effected first. For a flat platc inclined

at an angle 6 with the approaching flow

(o gy =m- 8 (Lsa)
and [£(o))p, = -8 (4sp)

In this case the continuous function g(¢l) is a constant, ©.

The coefficient

0 0 (46)

The coefficient An is determined from

(P]_D 1

A sinh(nmK'/K) = 2m cos nxp, Ao, - 26 cos ntip, dep.
0 0

_2 .
o sin nﬂtp:LD

From the theory of Jacobian elliptic functions Jacobi's nome is defined as

q = exp(-mK'/K) 3 0 <qg<1 (47)
Hence,
sinh(ntK'/K) = % [q-n - qp]
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and

_h .
An 4 ;f%—gia gin nnmlD (h8)

The general solution becomes

o«
) wl + “+ r‘ [o] = - SR TR

|
Jlo
[\
~
[}
=
sé
o
}_I
[
E
=
=]
[
[¢]
[a]
o
3
$
~~
4=
\O
~

By inspection the harmonic conjugate

@©

V.. K -
myTrmgr (o - [ e - b Z
n=1

n
2n) sin nmp, jcosh nmy,sin nmp, (50)

n(l - q
On line AFE ln V/U is O. On line BC, however, 1n V/U # O unless A = 0; in

other words

- 8
cplD 1

This relationship means that the location of point D in the w,~plane is related

1
by the magnitude of 6.

By inspection the logarithmic complex velocity

hed n
Q=-14 Z ——-9-? sin ntp, o sin nmw, (51)

The infinite series can be expressed in terms of elliptic functions, Hancock

(7), such that

Q = en [kw), Kol - 2Kw,Z (Ko, ] (52)
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¥

in which I is Iegendre's incomplete elliptic integral of the third kind and Z
is the Jacobian zeta function. For purposes of numerical computation it is

more suitable to relate 11 and Z to Jacobi's theta functions, from Hancock

®[le i} K‘Pm]
@'[le + K:plD]

Q=1n

Written for inclusion in equation (2k)

- _ ®[KW1 * K‘Pm]

®[le - KmlD} (53)

e

For a curved boundary on EDC g(wl) is not a constant and

1
2 . g
A,n = 5 sin nme, . - L . dgn‘/ﬁ g(ml) cos nﬂ¢1d¢l (54)
0

The first term is identical to that for the flat-plate solution except that

P17 will vary, depending on the expression g(wl) and the requirement that

AO = 0 (in order that 1n V/U = 0 on BC). The expression for e-Q can be written

for a curved boundary as

-Q _ @[le i K‘PJ_D]
- @PW1~ &65]

e

G(w,) (55)

in which

G(wl) = exp 2: A'n sin nmw (56)
n=1

1
and, in which A'n sinh (nmK'/K) = - 2 jo g(qi) cos nmp,dep,
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For expedient calculation of the Jacobian elliptic functions in the
expression for dw/uwl the relationships between the Jacobian elliptic functions

and Jacobi's eta and theta functions will be used. From Byrd and Friedman (5)

I
—~
~

sn(le) = 7§r@—1§;17 s (57a)

; H,(Kw.,)
cn(KWl) = %; élrﬁaiy s (5Tb)
and |
C) (le)

dn(le) = /%T 6lzkgzy . (57c)

The final expression for dz

vkg” (k) - K (kw,)| @) 0 (or))

£
™
[EN]
]
= AV
o'l

ak@g(le) + }12(le) H(le) Hl(le)

(58)
@(le + chlD)

@(le - KmlD)

G(wl )dwl

For the flat plate P1p = B/n and G(wl) = 1. The parameter ?1p and the function
G(Wl) depend solely on the function g(ml) describing the shape of EDC.

The three curved-boundary functions will be referred to as the sine-,
cosine-, and dn-functions.

For the sine-function

glpy) = - [’\ - sin g Cpl] (59)
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in which ¢ and A are constants. The angle of the fluid leaving EDC at points

E and C is

5, =m(1 - =), (60a)

8§, = - H (60b)

The value of o must be greater than two in order that the fluid leaves E in

the second quadrant. In order that éc is negative, A > 1. 1In order that

A =0
o)
-1 _2
®p =5 A -7l
The coefficient
n
A =-8 1
n o] 2 2n
(kn® - 1)(1 - )
and
8 &
Glw,) =exp(¢ - = Z sin nmw (61)
1 2 2n 1
© & (b - 1)(1-q)
For the cosine-function
m .
g(wl) =3 [x + cos ﬂml] 30 >1, o> b4
The angles

5 =1’r[l- U—Wl] , (62a)
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and

5 = . -1)
¢ o
The location of D in w,-plane
=2
Ao T
The curved-boundary function
G(wl) =exp{ - 21 9 gin mw
o
l -
Finally, for the dn-function
&(e,)
The angles
_ g -1
6E =n ( o ))
and
= o II 1
s s
For point D
- _T
D~ 2Ko

The expression for the effect of curvature

25
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g
|._l
S
o]
Vv
V]

~~
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o

g

(63)

(64a)

(6h4)



Kw Kw
2] o
G(w,) = exp < - g *--—) + -—T—g—~——-—' ¢ (65)

\ /

The curved-boundary function f(g
functions. For the sine-function o = 3 and A = 1. For the cosine-function
o =6and A = 1. For the dn-function g = 3 and k? = 0.9999. The flat-plate
condition is also displayed for 8 = ﬂ/5.

The computation of Jacobi's eta and theta functions and the numerical
integration of equation (58) is greatly facilitated if the functions are
expressed in terms of infinite series, as outlined in Appendix B. A computer
program for the numerical evaluation of the parameters involved in the theory

is included as Appendix C. The results of the theory are discussed in the

following.
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DISCUSSION -OF RESULTS

The results of this investigation are discussed with reference to the

force exerted on the tire surface by the water and the pressure distribution

on the pavement. The force on the tire can be resolved into its vertical and
horizontal components, commonly called 1ift and drag, respectively. When the
lift force equals the weight force transmitted to the wheel, hydroplaning will
occur. The amount the tire lifts off the pavement surface depends on the tire
shape, water depth, and the speed of the vehicle. There will obviously be an
equilibrium position of the tire for each speed greater than that required for
incipient hydroplaning. The 1ift coefficients from this study are compared with
experimental results of Horne and Dreher in the following. A comparison is also
made between the theoretical and measured pressure distribution on the pavement.
The shape of the planing surface selected to simulate the wetted portion of a

hydroplaning tire is discussed first.

Resulting Shape of Planing Surface - The shape of the curved surface simulating

the tire is assumed in the theoretical development. Three different functions
were chosen to produce shapes resembling the wetted portion of a tire. They are
known as the sine-, cosine-, and dn-functions. The least satisfactory is the
dn-function as it results in very slight curvature and too great a clearance
between tire and pavement. The cosine-function results in a tire having con-
siderable more curvature on EDC, but is not entirely adequate. The resulting
shape of the tire, the initial water depth, and the clearance between the tire
and pavement are most realistic when the sine-function is used. For the sine-
function the tire shapes and flow patterns that appear to more closely simulate

tire hydroplaning at various degrees are shown in Figures 10 through 14. One
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pattern resulting from the cosine-function is shown in Figure 15. The physical
variables for each situation presented are the clearance in terms of the water
depth, h/D, the angle of the water leaving the tire at points E and C, the length
of the tire surface referenced to the water depth, £/D, and, to some degree, a
change in tire shape. For the results presented the ration L/D is greater than
ks the ratio h/D was chosen to be less than 1/2; the angle at E was varied from
109.3° to 150°; and the angle at C was maintained greater than -9°. The shape
of the tire is seen to change only slightly as the elliptic modulus, k, is
varied. The theory does not include the unwetted portion of the tire; that is,
above point E. Hence all resulting shapes that showed the water jet leaving
point E and curving severly clockwise towards the imagined continuation of the
tire shape E were discarded.

The resulting shapes do resemble the water-contact area of a hydroplaning
tire. TFigure 10 simulates essentially incipient hydroplaning as the water
leaving under the tire constitutes a small fraction of the initial depth.
Figures 11 through 13 show the flow pattern as the hydroplaning becomes more and
more severe. For Figure 14 the angles GC and 6E are different than those for

the shapes shown in Figures 10 through 13.

Comparison of Lift Forces - The hydrodynamic 1ift force can always be related

to a lift coefficient through equation (2)

Coa B
Fr, = CA S

As mentioned in the section concerning the various fluid-property effects,
Horne and Dreher represented the characteristic area, A, by the static foot-

print area and U by the velocity of the vehicle at the condition of incipient
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hydroplaning. To an approximation, then, the load on the wheel can be equated
to p, A, in which D. is the tire inflation pressure. The 1lift coefficient

associated with incipient hydroplaning can be computed from test results from

As a resulit of this
value of the 1lift coefficient associated with incipient hydroplaning of a given

tire. Below incipient hydroplaning speeds CL > CLi'

speeds CL < CLi' It is not apparent, however, that CLi should be a constant for

Above incipient hydroplaning

all tire pressures and water depths as the flow pattern obviously depends on
these quantities. In any case Horne and Dreher found that, from tests covering
a range of tire-inflation pressures from 24 psi to 150 psi, of vehicle speeds

from 45 mph to 120 mph, and of vehicle loads from 125 1b to 22,000 1b, C,. =~ O.7.

Li =
Their tests covered values of water depths greater than those associated with
the viscous phenomenon (lubrication).

In comparing theoretical results with those of Horne and Dreher there is a
guestion as to what characteristic area to use. Since the theory is based on
two-dimensional flow only one dimension needs to be chosen for the characteristic
area, A. The water depth, D, 1s not chosen as it does not appear to be a sig-
nificant variable in the results of Horne and Dreher. It is believed that the
area of the tire in contact with the water would most closely represent the tire
footprint area used in the analysis of the experimental results. The area A per

unit width of tire is thence chosen to be 4, the total length of the planing

plate. The 1ift coefficient for hydroplaning is defined by

"L

‘L " otif /2
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in which FL in this case is the force per unit width of tire. The 1lift

coefficient shou given tire shape and water depth as the
clearance, h, is increased. Physically this means that as the speed of the
vehicle is increased there is a subsequent increase in the clearance as less
fluid has to have its momentum changed to provide the same 1ift force. Each of
the tire shapes and clearances presented here simulate an assumed equilibrium
condition; that is, the tire is held at its particular clearance by a balance of
1ift force and vehicle load for that water depth, tire-inflation pressure, and
vehicle speed. It should be noted that the tire-inflation pressure is only
indirectly involved in the theory by this concept of equilibrium condition.

The flow pattern depicted by the shape of Figure 10 is believed to most
closely simulate incipient hydroplaning as there is a minimal amount of water
flowing under the tire. The theoretical 1lift coefficient of approximately 0.8
can only be compared to the experimental one of 0.7 if the characteristic areas
in equation (2) are identical. It is believed that the area based on the
wetted length of the plate in the theory is not unlike the static footprint
area used 1in the analysis of the experimental results for the following reason.
As shown by Horne and Dreher the actual effective area of the pavement that is
subject to significant water pressures is a vertical projection of the static
footprint area. To an approximation, then, the effective wetted area of the
tire is the static footprint area. If the wetted area of the curved surface
incorporated in the theory can be assumed to be similar to the static footprint
area then the 1ift coefficients are similarly defined for theory and experiment.
If this similarity actually exists then it is not surprising that the 1ift

coefficient from theory (0.8) is greater than that from experiment (0.7) as the

three~dimensiocnal effect precludes a uniform pressure distribution completely
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across the tire.

Figures 11 through 13 are considered to simulate a tire undergoing total
hydroplaning. As the clearance between the tire and pavement is increased the
1ift coefficient is seen to decrease, meaning that, for the same wheel load,
the vehicle speed necessarily has to be greater than that for smaller clearances.

In actuality the clearance automatically becomes greater as the speed is increased.

Drag Force - The hydrodynamic drag force is defined by

a2
FD CDA 2
in which CD is a drag coefficient, depending on the same quantities as the

1ift coefficient, C For the theoretical analysis the drag force is per unit

L
width of tire and A is defined as the planing surface width, 4, times the unit
width. Values of CD are indicated in Figures 10 through 15 for the respective
planing surfaces. As the clearance increases for the planing surface the drag
coefficient decreases as less fluid has its momentum changed. No attempt is

made to compare the theoretical values of CD with experiment as the characteristic

area used by Horne et al (9) for the drag equation differs from the area defined

here.

Pressure Distribution on the Pavement - The distribution of the water pressure

on the pavement can be computed from Bernoulli's equation. It is more significant

to represent the pressure distribution in terms of a pressure coefficient

. - P %

T I =1- @F (66)
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Where the pressure is atmospheric Cp = 0; whereas at a stagnation point Cp = 1.
Since the only stagnation point in the flow is on the planing surface CD < 1 on
the pavement. For the condition of incipient hydroplaning CP will approach
unity somewhere or. the pavement.

The theoretical pressure distribution on the pavement is shown in Figure 16
for a typical planing surface. The corresponding experimental pressure distri-
bution, from Horne (8) is shown as a comparison in Figure 17. In both illus-
trations the horizontal coordinate is in terms of the water depth, or x/D. The
marked similarity between theory and experiment further indicates that the
planing surface in effect essentially simulates a tire undergoing incipient to
total hydroplaning. Figures 16 and 17 were not superposed as there is
actually no way to reference the horizontal coordinates of the thecretical sur-
face to those of the actual tire. The maximum value of Cp = 0.91 from experi-
ment corresponding to a maximum value of Cp = 0.99 from theory indicates that
the tire actually had a greater clearance than the planing surface displayed in
Figure 16. The planing surfaces of Figures 11, 12, and 13, having greater
values of the clearance, h/D, will possess maximum values of CP on the pavement
less than 0.99. The negative pressure in front of the tire in Figure 17 can not

be explained by the theory.



CONCLUSIONS AND RECOMMENDATIONS

The object of this study was to develop a theory to demonstrate the
phenomenon of pneumatic tire hydroplaning from the standpoint of hydrodynamics.
The strength of any theory rests in its comparison with experimental results.

It is concluded that the planing surface resulting from the theory exhibits
similar hydrodynamics behavior as a hydroplaning pneumatic tire as (1) the 1ift
force from theory results in CL = 0.8 at incipient hydroplaning compared with

Cp = 0.7 from experiment, and (2) the theoretical pressure distribution on the
pavement (runway) is very similar in shape to the measured pressure distribution.
It is also concluded that, for moderate water depths and grooved tires, the lift
coefficient for incipient hydroplaning is essentially a constant. Moreover, the
assumption of an ideal fluid for tire hydroplaning is justified except for the
extreme case of smooth tires and/or thin films of water on the pavement.

For future studies it is recommended that the elasticity of the tire as well

as three-dimensional hydrodynamic effects be considered.
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Figure 6. Boundary Conditions for 8 in w-Plane.
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APPENDIX B

ELLIPTIC FUNCTIONS AND NUMERICAL TECHNIQUES OF COMPUTATION

The square of the modulus of the Jacobian elliptic functions, k?, is

k' =1-k

garded as the independent variable. The square of the complementary modulus

aiips Lelivaly e L

2
For moderate values of kK Jacobi's nome can be computed from the series,

%
Whittaker and Watson

P 9 13

g =¢e +2e” + 15¢7 + 150e 7 + . .

in which

And, by definition of the nome

K' =2 1n

ERE
Q|-

(68)

(69)

(70)

(71)

~30
For values of k? near 1 (the largest chosen in this study was 1 - 10 5 ) the

series for g does not converge rapidly enough. From Byrd and Friedman**, for

*
Whittaker, E. T. and G. N. Watson, A Course of Modern Analysis, Cambridge

University Press, Cambridge, 19Lk.

3¢
Byrd, P. F. and M. D. Friedman, Handbook of Elliptic Integrals for Engineers

and Physicists, Springer-Verlag, Berlin, 195k.
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2 . e s
kX~ approaching unity the elliptic parameters are best determined by

a4 Ex? - 9 ot 7]+ 25 16 37

k=n+ ik -1+ 4k [A-6]+256k [A-30]+... (72)
‘1 i = 1y
in which A = In )
K.=3[1+1k,2+,6%k,h+gik,6+122 k,8+ ] %)
2 I 256 1673 SR 3
and

q = exp(-mK'/K) (%)

These two series give adequate convergence for values of k? as large as
-50

1-10 2 .

The rapidly converging infinite series for the eta and theta functions,

Byrd and Friedman, are suitable for numerical calculations

® 2

1
Brey) =2 ) (D™ ™2 sanl(n - B (752)
n=1
) 2
% (n-3) 1
B (k) =2 ) av 2’ cos [(n - F)m,] (750)
nel
® 2
® (Kwi) =1+2 E: (-1)" qn cos nmiy (75¢)
n=1
and
© (kw)) =1 +2 i qn2 oS 1y (753)
n=1

The location of point F in the t-plane depends on the value of the modulus,
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k, and the location of F in the wl-plane. Fram equation (33) and the above

relations

] Ky, 5

1
a=-% 5 (76)
) @r[inlF]
The location of point D in the t-plane is computed from equation (34) to ve
2
_1 8 (Key)
b =% H? (r7)
(Ko, p)

The actual geometry of the flow pattern and the shape of the tire have to
be determined by integrating equation (58). The eta and theta functions are
expressed in terms of the infinite series for each line of the wl—plane on
which the equation is integrated. For each streamline in the z-plane the ex-
pression in equation (58) is reduced to its real and imaginary parts. The
integration is performed by using the trapezoidal rule, Simpson's rule, or a
numerical integration equation of higher order, depending on the rate of change
of the integrand for the conditions specified. The shape of the tire is deter-
mined by integrating equation (58) from E to C in the w,-plane. As an

example, on line EDC

and

dwl = dcpl
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The function ® (le) on EDC is evaluated from

= 2
o[t e =1+ ) (W™ @ (@ + ¢ cos nmp,
n=1

(78)

®
_3 ZE: (-1)" q?? (™ - ¢ sin ntkp.
n=1
The other functions in equation (58) are evaluated similarly. Caution has to
be taken at the singular point D. The integrand of equation (58) is indeterminate
at D. By using L'Hospital's rule the integrand is found to be finite. The
shape of the streamlines AFE and BC can also be determined by numerical inte-

gration of equation (58) along the respective lines in the w.-plane.

1
The pressure distribution on the tire and the runway can be determined from
equation (12). The total force on the tire can be determined by integrating the

pressure distribution over its surface. The 1lift coefficient

e
o = A de(D)
L 1 ?
D
and the drag coefficient

I cqx

D v

D

in which Cp is the pressure coefficient, defined as
2
)

=1 - (¥
cP 1 (U
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The drag coefficient can also be computed (as a check) from a simple momentum

analysis to be

in which 5w is the angle that the jet leaving the tire at E finally makes at
F with the positive x-direction. The angle 6F is computed from equation (55).

The water depth at d is computed from equation (27)

o
i
[

wife?

]
o'|p
'_l
[

The clearance that the trailing edge of the surface makes with the pave-
ment, h, is computed by integrating equation (58) from B to C in terms of the
vertical coordinate, y.

The pressure distribution on the pavement is computed from equations (55)
and (66). The coordinates on line AB are referenced to point C (or E) by inte-
grating from a point near B on BC toward C. By integrating from a point near
B on AB having the same value of the velocity potential, ¢, as that at the
corresponding point on BC the pressure distribution on AB can be referenced to
CDE.

The parameters in the theory that may be varied for each of the assumed

curved-surface functions are the modulus, k, the location of F in the w,-plane,

1
¢1F, and the parameters describing the curved-boundary function, o and A.
Realistic planing surfaces and clearances are obtained only if the square of

the modulus, k?, is considerably greater than 0.99. Values chosen for W2F =

(K/K')wlF were 0.7 and 0.9. The chosen values of ¢ and A depended on the
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curved-boundary function used. The computer program utilized for evaluating
the elliptic functions and in integrating equation (58) is presented in

Appendix C.
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APPENDIX C

DIGITAL COMPUTER PROGRAM

Because of the complexity of the relationships involved and the large
number of infinite series appearing in the theory, a high-speed digital computer
was essential in order that numerical results may be obtained. The program was
written in ALGOL 60 for use by the Burroughs B-5500 of the Rich Electronic
Computer Center of the Engineering Experiment Station. The coordinates of the
planing surface, the pressure distribution on the runway and the gross quantities
such as 1ift and drag coefficients and length of the planing surface are the out-
put. The computer time required for each planing surface assumed was approx-

imately 250 seconds.
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